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Bivalves are diverse and abundant constit-
uents of modern marine faunas, and they
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have been instrumental in informing debates
concerning the roles of biological factors in
extinction risk (e.g., STanLEY, 1986a; Raup
& JaBLonskl, 1993; JaBLoNskl, 2005; Rivab-
ENEIRA & MARQUET, 2007: CRAMPTON &
others, 2010), the tempo and mode of evolu-
tionary change (e.g., KeLLEy, 1983; GEARY,
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do not expect substantial changes. Studies
conducted at comparably broad spatial,
temporal, and taxonomic scales have shown
that taxonomic errors tend to be randomly
distributed and overall macroevolutionary
patterns are surprisingly robust (Abrain &
WEesTrop, 2000; AusicH & PeTERs, 2005;
WaGNER & others, 2007).

Rates of extinction, origination, and pres-
ervation for marine bivalve genera were esti-
mated for 71 time intervals that correspond
roughly to geologic stages. Data for some
stages were combined to minimize temporal
variation in interval duration (median interval
duration = 6.4 million years; interquartile
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However, previous studies conducted at
comparable scales have generally found
taxonomic errors to be randomly distrib-
uted (AbraIN & WEsTroP, 2000; W
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nation through the removal of incumbent
taxa and opening up of ecospace. Under-
standing whether extinction and origina-
tion rates operate in a diversity-dependent
fashion has important implications for our
understanding of the role of biotic interac-
tions in diversification (Sepkoski, 1978;
MiLLER & SEPKOSKI
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the next interval, and this effect subsequently
weakens over time. The association between
extinction rate in an interval (t) and origi-
nation rate in the next interval (t + 1) was
approximately double that of extinction rate
and origination rate two intervals later (t + 2)
(i.e., slopes of 0.30 and 0.16 respectively).
These results are consistent with studies of
the relationship between extinction and orig-
ination for skeletonized marine invertebrates
as a whole (Lu, Yoco, & MaRsHALL, 2006;
ALroY, 2008), and corroborate previous
work on marine bivalves that documented
hyperexponential bursts of diversification
following mass extinction events (MiLLER &
SEPKOSKI
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redirect evolutionary or ecological trends by
eliminating important innovations (PoJETaA
& PALMER, 1976; FURSICH & JABLONSKI,
1984; JABLONSKI
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across four mass extinctions—the end-
Ordovician, Late Devonian, end-Permian,
and end-Triassic events—concluded that
geographically widespread bivalve genera
were more likely to survive, at least in the
initial stages of an extinction event, before
drastic deterioration of the physical envi-
ronment (BreTsky, 1973). The event that
has been most thoroughly examined for
geographic range selectivity is the K/Pg mass
extinction, in conjunction with the interval
of background extinction leading up to it.
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extinctions yield contradictory results (4
negative, 5 positive, 6 nonsignificant). When
the mass extinction events are broken down
by specific event, the results remain mixed.
For example, while bivalve genera glob-
ally did not exhibit differential survival
with respect to life habit across the end-
Permian mass extinction (JaBLoNskl, 2005),
regional patterns from China suggested
greater losses of epifaunal than infaunal
bivalve genera (KnoLL & others, 2007).
Perhaps these differences reflect the extent
to which different geographic regions were
affected by environmental deterioration. In
another example, preferential extinction of
infaunal bivalve species was documented
across the K/Pg boundary in New Jersey
and the Delmarva Peninsula of the United
States (GALLAGHER, 1991), but subsequent
work found the opposite pattern for bivalve
species in Denmark (HeinBerg, 1999) and
the Southern Hemisphere (StitweLt, 2003).

Although global analyses of selectivity
can be very useful in seeking possible causes
of extinction, they can obscure regional
patterns that may be less predictable and yet
likely to provide more information about
the interacting effects of biotic and abiotic
factors on survivorship. Spatial variation in
environmental change, coupled with spatial
heterogeneity in the distributions of taxa and
associated biological traits, effectively ensure
that patterns of selectivity will vary region-
ally (see FrRiTz, BININDA-EMONDS, & PURViIs,
2009, for an example of geographic variation
in extinction risk among extant mammals).
Spatial variation may provide useful informa-
tion about gradients of environmental change
and the existence of environmental thresholds
affecting taxon survivorship. Despite the
clear importance of regional-scale studies in
modern conservation biology, paleontological
examples are few and far between.

Although large body size is widely thought
to increase extinction risk in vertebrates,
the link between size and extinction risk in
marine invertebrates is considerably more
ambiguous (HaLLAM, 1975; STaNLEY, 1986b;
Bubbp & JoHNson, 1991; JaBLoNskI, 1996b;
SmiITH & Roy, 2006). Among invertebrates,

increased body size is often associated
with increased fecundity, broader environ-
mental tolerance, and wider geographic
range (STanLEy, 1986b; McKinNEY, 1990;
Rosenzwelc, 1995; HiLDRew, RAFFAELLI, &
Epmonbs-Brown, 2007), which suggests
that larger taxa should have increased rates
of survivorship. Among marine bivalves,
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were considered. This emphasizes an under-
appreciated problem that may affect many
selectivity studies. Patterns of selectivity can
sometimes be masked or artificially exagger-
ated when phylogenetic relationships are not
taken into account (Purvis, 2008). Taxa may
share a particular trait and similar pattern
of survivorship because they are related
to each other and not necessarily because
the trait under consideration, by itself,
confers survivorship. A recent analysis (Royv,
HunT, & JaBLonskl, 2009) of Jurassic to
Recent bivalves demonstrated conclusively
that phylogenetic clustering of extinction
occurs. Phylogenetic relationships do not
always affect patterns of selectivity, however;
for example, patterns of selectivity among
Cenozoic mollusks from New Zealand did
not change appreciably after accounting
for phylogeny (FooTe & others, 2008;
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feeding habits in differentiating among
possible extinction mechanisms, this poten-
tial has seldom been realized (but see KnoLL
& others, 1996, 2007, for exceptions). As
our understanding of changes in primary
productivity associated with mass extinc-
tions deepens, aided by geochemical proxies,
it should be possible to further refine and
test hypotheses bearing on the relationship
between feeding mode and extinction risk
across an array of marine environments.
Most of the studies outlined above focus
on the selectivity of single traits and do not
consider the potential interactions among
multiple traits. We have every reason to
believe, based on ecological studies of extant
bivalves and many other clades, that several
of these traits, for example, body size and
geographic range (JaBLonskl & Roy, 2003;
CrampTON & others, 2010; HarNIk, 2011),
are linked to one another. This raises the
question—to what extent do these interac-
tions influence patterns of selectivity? A
handful of recent studies have tackled this
question for marine bivalves (JABLONSKI

13
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nation. This diversity-dependent process is
most pronounced following mass extinc-
tions, but operated consistently throughout
the history of the clade. Studies of marine
bivalves have yielded important insights into
extinction selectivity, and specifically, the
effects of biological traits on survivorship.
We review this literature, focusing on four
traits that have received the most attention.
Geographic range size is the most consistent
predictor of bivalve survivorship considered
to date. Traits like feeding mode and life
habit may also be important, but these are
probably more dependent on the particular
context of environmental change. Body
size is largely decoupled from extinction
risk despite reasons to expect otherwise.
The growing paleontological literature on
selectivity underscores the major contribu-
tion of fossil bivalves to our understanding
of the factors that influence extinction risk.
It highlights a fruitful area for collaboration
between researchers studying the effects of
extinction on marine systems today and in
the past.
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